時近端午節,大家都可有食粽應節。傳統咸粽都以精制糯米為主要成分,配以去殼綠豆及內餡如蛋黃、肥豬肉等;而甜粽更大多只有糯米和豆沙。雖然甘香美味,但對身體負擔亦不少。
精製穀物與全穀物
包粽的糯米,是精製穀物的一種,即是穀物的外殼已被去除。相反,全穀麥就是連同外殼一同進食的穀物,例如:紅米、糙米等等。食用過多精製穀物會增加內臟脂肪的累積、導致中央肥胖及心血管疾病。一項日本研究比較了糖尿病人進食啡糯米(未加工的糯米)和白米之後的血糖變化,結果發現,進食啡糯米的糖尿病人能更有效控制血糖。由此可見,包含外殼的穀物比精制穀物更易控制血糖和糖尿病情況。
更有研究指出進食全穀物有助改善腸道菌群的多樣性,主要原因是因為穀物的外殼含有植物纖維,也就是益生元的一種。當穀物外殼到達腸道的時候,纖維發酵有助腸道益菌生長,從而改善腸道菌群多樣性。買粽時大家可以選擇含有較多全穀麥的糭,例如含有五穀、藜麥、紅米、糙米等等。也可以減少購買含有肥豬肉或蛋黃的粽,避免攝取過量脂肪。甚至可以選購健康材料,然後在家中自己製作健康粽。多加入新鮮健康食材,例如:不同的全穀麥、冬菇、瘦肉、綠豆、紅腰豆,增加膳食纖維,並減少動物脂肪。
糯米富含高升糖支鏈澱粉
糯米是澱粉質類食物,澱粉質主要可以分為「直鏈澱粉」(Amylose)和「支鏈澱粉」(Amylopectin) 兩種多醣(Polysaccharides)。顧名思義,「直鏈澱粉」就是由一條條排成長列的葡萄糖組成,而「支鏈澱粉」就是由分支的葡萄糖列組成的。葡萄糖分支令人體消化「支鏈澱粉」成為葡萄糖的速度較快,因此含有高「支鏈澱粉」比例的澱粉質就是高升糖指數(Glycemic index GI)食物。其中糯米就是最好的例子,糯米含有約98%「支鏈澱粉」,食用後糯米澱粉會快速被消化並吸收,大量葡萄糖進入血液,導致血糖水平飆升。血糖水平快速提升是其中一項導致糖尿病的主要原因。
粽配茶 緩升糖 益腸道
前文曾介紹大家以熱茶配粽食用。除了當中的多酚(polyphenols)能提升蛋白酶(pepsin)的活性,有助促進消化和油脂代謝外;更能改善升糖水平。
新加坡有研究發現,多種茶葉沖泡出來的茶,尤其是經過發酵的黑茶(Black tea),能抑制唾液澱粉酶(Human salivary alpha-amylase)及麥芽糖酶(mammalian α-glucosidase AGH)等澱粉酶、減慢澱粉消化分解,從而降緩血糖上升速度。亦有日本臨床研究指出,食用白飯後飲用黑茶的受試者,血糖和胰島素指數都比飲用類似味道的合成飲品為低。有不少研究亦指出,中國黑茶中的普洱亦有緩減升糖的效果。
而茶更能改善腸道微生物組,有綜合研究分析不同茶品於人類及小鼠實驗指出,綠茶、烏龍和普洱等,都有增進擬桿菌(Bacteroidetes)和降低厚壁菌門 (Firmicutes)的作用;個別研究更顯示茶飲能增加腸道微生物多樣性(Diversity)。可見茶飲能有助降緩食用糯米粽後血糖水平飆升的影響,亦對腸道微生物有益。
小青柑茶:普洱與柑皮的發酵轉化組合
講起消滯茶飲,大家都可能想起普洱。市面出售的普洱大多為經發酵的黑茶,亦有小部分未經發酵的生茶。茶葉的發酵過程亦是微生物組的「工作成果」,它們把茶葉中人體未能完全利用的多酚轉化為可為身體利用的化合物。例如將普洱的沒食子酸鹽(Gallates)轉化為抗氧化的沒食子酸(Gallic acid)和鞣花酸(Ellagic acid)。但因製作過程中還可能滲入黴菌等細菌而產生微量黴菌毒素,故應「洗茶」:即把第一泡的茶棄掉為佳。
端午時節食粽配茶,可以加一點果皮的清新味道。「小青柑茶」是以新會初結果未成熟的小青柑,取其外皮作殼,再加入普洱茶葉在內發酵晒乾而成。除包含濃郁的普洱茶及其益處外;還有外殼的清香果皮,其功效亦和陳皮類近(以中醫角度來說更為猛烈)。陳皮含抗炎的川陳皮素(Nobiletin)及抗癌物質橘紅素(Tangeretin)。在不少實驗都發現,陳皮對於肥胖小鼠的體重、血脂和血糖都有抑制作用。而陳皮亦能降低有關肥胖的F:B比例、增加腸道微生物多樣性及促進益菌如Akk菌(Akkermansia mucinphila)生長,對腸道亦有益。
小青柑茶集合了普洱和果皮的美味和益處,而且小巧精緻、方便攜帶;是端午品茶食粽的好選擇。吃粽配小青柑普洱茶有助消化、減緩升糖。但因消化需時,而茶亦有提神作用。故兩者都是最好在日間食用,以免影響睡眠休息。食粽後容易感到飽飽滯滯,可適量補充益纖菌,為腸道增添好菌、減少消化不良及舒緩腹脹不適的情況。
精簡版於2021年6月11日晴報刊登
參考資料/延伸閱讀:
<益生第一關>2020/06/26--『食粽配三寶腸胃一定好』
https://hskgene.com/blogs/probiolife-first/rice-dumpling-2020
<益生第一關>2019/05/31--『「粽」是要淺嘗』
https://hskgene.com/blogs/probiolife-first/rice-dumpling
<益生第一關>2020/09/18--『「超級穀物」真面目』
https://hskgene.com/blogs/probiolife-first/quinoa_buckwheat_foxtailmillet
<益生第一關>2020/09/25--『多色茶食伴中秋健康滋味同兼收』
https://hskgene.com/blogs/probiolife-first/tea_mid_autumn
Easy Reading:
Facts and Food Sources of Amylopectin | 2018.12.24 | Health Benefits Times
https://www.healthbenefitstimes.com/nutrition/amylopectin/
Amylopectin: 3 Reasons to Avoid Foods with This Type of Starch | 2017.12.08 | Dr. Axe
https://draxe.com/nutrition/amylopectin/
【端午節2021】1隻裹蒸糉= 6碗白飯?營養師教你食糉唔怕肥3大健康法則(附素糉選擇)| 2021.05.13 | green common
https://www.greencommon.com/hk/tc/green-tip/nutritionist-rice-dumplings-health-tips/
「糉」瘦得起!營養師:自製糉子4大健康要訣及消滯餐單| 2019.06.06 | healthyD
https://www.healthyd.com/articles/sportsandfood/how-to-eat-zongzi-more-healthy
減脂抗老就喝普洱茶!還有4養胃護肝藥茶推薦| 2017.02.22 | 早安健康
https://www.edh.tw/article/25668
喝茶好#新會小青柑|2019.03.18| 晴報 - 生活副刊 - 專欄https://skypost.ulifestyle.com.hk/article/2299785/%E5%96%9D%E8%8C%B6%E5%A5%BD%23%E6%96%B0%E6%9C%83%E5%B0%8F%E9%9D%92%E6%9F%91
小青柑最出色的三个功效,你知道吗?|2020.07.28|云南网
https://m.yunnan.cn/system/2020/07/28/030836201.shtml
Google Images:
糉rice dumplingsglutinous rice 小青柑茶
學術論文:
Behall KM, Howe JC. Effect of long-term consumption of amylose vs amylopectin starch on metabolic variables in human subjects. The American Journal of Clinical Nutrition. 1995;61: 334–340. doi:10.1093/ajcn/61.2.334
https://academic.oup.com/ajcn/article-abstract/61/2/334/4651290
Behall KM, Scholfield DJ, Yuhaniak I, Canary J. Diets containing high amylose vs amylopectin starch: effects on metabolic variables in human subjects. The American Journal of Clinical Nutrition. 1989;49: 337–344. doi:10.1093/ajcn/49.2.337
https://doi.org/10.1093/ajcn/49.2.337
Nakayama T, Nagai Y, Uehara Y, Nakamura Y, Ishii S, Kato H, et al. Eating glutinous brown rice twice a day for 8 weeks improves glycemic control in Japanese patients with diabetes mellitus. Nutrition & Diabetes. 2017;7: e273–e273. doi:10.1038/nutd.2017.26
https://www.nature.com/articles/nutd201726
Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. The ISME Journal. 2013;7: 269–280. doi:10.1038/ismej.2012.104
https://www.nature.com/articles/ismej2012104
Ross AB, Bruce SJ, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Bourgeois A, et al. A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and LDL-cholesterol compared with a refined-grain diet in healthy subjects. Br J Nutr. 2011;105: 1492–1502. doi:10.1017/S0007114510005209
https://doi.org/10.1017/S0007114510005209
Ji XN, Huang M, Yao SH, Qi JY, Onwuka JU, Wang Y, et al. Refined grains intake in high fat, high protein, low carbohydrate and low energy levels subgroups and higher likelihood of abdominal obesity in Chinese population. International Journal of Food Sciences and Nutrition. 2020;71: 979–990. doi:10.1080/09637486.2020.1746956
https://doi.org/10.1080/09637486.2020.1746956
Wiseman CE, Higgins JA, Denyer GS, Brand Miller JC. Amylopectin Starch Induces Nonreversible Insulin Resistance in Rats. The Journal of Nutrition. 1996;126: 410–415. doi:10.1093/jn/126.2.410
https://doi.org/10.1093/jn/126.2.410
Zhang Y, Skaar I, Sulyok M, Liu X, Rao M, Taylor JW. The Microbiome and Metabolites in Fermented Pu-erh Tea as Revealed by High-Throughput Sequencing and Quantitative Multiplex Metabolite Analysis. PLOS ONE. 2016;11: e0157847. doi:10.1371/journal.pone.0157847
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157847
Bond T, Derbyshire E. Tea Compounds and the Gut Microbiome: Findings from Trials and Mechanistic Studies. Nutrients. 2019;11: 2364. doi:10.3390/nu11102364
https://www.mdpi.com/2072-6643/11/10/2364
Koh LW, Wong LL, Loo YY, Kasapis S, Huang D. Evaluation of Different Teas against Starch Digestibility by Mammalian Glycosidases. J Agric Food Chem. 2010;58: 148–154. doi:10.1021/jf903011g
https://pubs.acs.org/doi/full/10.1021/jf903011g
Isono Y, Watanabe H, Kumada M, Takara T, Iio S. Black tea decreases postprandial blood glucose levels in healthy humans and contains high-molecular-weight polyphenols that inhibit α-glucosidase and α-amylase in vitro: a randomized, double blind, placebo-controlled, crossover trial. Functional Foods in Health and Disease. 2021;11: 222–237. doi:10.31989/ffhd.v11i5.791
https://ffhdj.com/index.php/ffhd/article/view/791
Lin H-C, Lee C-T, Yen Y-Y, Chu C-L, Hsieh Y-P, Yang C-S, et al. Systematic review and meta-analysis of anti-hyperglycaemic effects of Pu-erh tea. International Journal of Food Science & Technology. 2019;54: 516–525. doi:https://doi.org/10.1111/ijfs.13966
https://ifst.onlinelibrary.wiley.com/doi/full/10.1111/ijfs.13966
Deng Y-T, Lin-Shiau S-Y, Shyur L-F, Lin J-K. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice. Food Funct. 2015;6: 1539–1546. doi:10.1039/c4fo01025f
https://pubmed.ncbi.nlm.nih.gov/25820466/
Hou F, Hu K, Gong Y, Xu J, Wu Y, Zhang M. Effects of in vitro simulated digestion on the flavonoid content and antioxidant activity of aged and fresh dried tangerine peel. Journal of Food Processing and Preservation. 2018;42: e13532. doi:https://doi.org/10.1111/jfpp.13532
Guo J, Tao H, Cao Y, Ho C-T, Jin S, Huang Q. Prevention of Obesity and Type 2 Diabetes with Aged Citrus Peel ( Chenpi ) Extract. J Agric Food Chem. 2016;64: 2053–2061. doi:10.1021/acs.jafc.5b0615
https://pubs.acs.org/doi/full/10.1021/acs.jafc.5b06157
Zhang M, Zhu J, Zhang X, Zhao D, Ma Y, Li D, et al. Aged citrus peel (chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food Funct. 2020;11: 2667–2678. doi:10.1039/C9FO02907A
https://pubs.rsc.org/en/content/articlelanding/2020/fo/c9fo02907a/unauth#!divAbstract
Li A, Wang N, Li N, Li B, Yan F, Song Y, et al. Modulation effect of chenpi extract on gut microbiota in high-fat diet-induced obese C57BL/6 mice. Journal of Food Biochemistry. 2021;45: e13541. doi:https://doi.org/10.1111/jfbc.13541